March 18, 2014

Do Now		00:04 00		3/19		
NaHCO₃+CH₃COOH → CO₂ + H₂O+ NaCH₃COO						
Moles						
PARTICLES						
Mass						
VOLUME						

Fill out this chart using what you are given and knowledge about balancing equations.

5 mL of CH₃COOH (vinager) g of NaHCO₃ (Baking soda)

Molar Mass NaHCO₃

Element	Atomic Mass	#	TOTAL	
С	12.011 g/mol	x 1	12.011 g/mol	
Н	1.008 g/mol	x 1	1.008 g/mol	
0	15.999 g/mol	x 3	47.997 g/mol	
Na	22.990 g/mol	x 1	22.990 g/mol	

84.006 <u>g</u> mol NaHCO₃

grams
$$NaHCO_3 = ? mL of CO_2$$

$$\frac{g_{\text{NaHCO}_3}}{1} \times \frac{1 \text{ mol}}{84.006 \text{ g}} =$$

Individual Exit Ticket

7.2.b) Explain why mole ratios are central to solving stoichiometry problems.

1 mol = 6.02 x 10²³ particles 1 mol = Molar Mass (g-formula-mass) 1 mol = 22.4 L (gas at STP)